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Summary 
 

Movement limitations in Rubik’s family cubes give rise to a set of rules which define restraints 
on what is possible. While much has been written about the rules that apply to the standard 
Rubik’s cube, much less is available for cubes of larger size. This document presents and 
justifies rules which in most cases need to be expressed as functions of cube size. The attributes 
considered are mostly mathematical in nature. Particular emphasis is given to parity and the 
number of unreachable states for cubes of any size, as there is a dearth of information available 
on these topics other than for the standard Rubik’s cube. 
 

  

                                                
1 Ken Fraser retired in 2002 as Principal Research Scientist and head of Helicopter Life Assessment at 

the Aeronautical and Maritime Research Laboratory (as it was known at the time), Defence Science 
and Technology Organisation, Department of Defence, Australia. This publication is the result of a 
leisure activity and has no relation to work at the Laboratory. 
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1.  Definitions 
 

Cube size The standard Rubik's cube is often referred to as a 3x3x3 cube. That cube will 
be referred to as a size 3 cube and in general an n x n x n cube will be referred 
to as a size n cube. 

Rubik cube 
family 

Cubes that have similar rotational properties to the standard Rubik's size 3 
cube and obey generalized rules for a size n cube are considered to be 
members of the Rubik cube family. Cubes of size 2 and above that meet this 
condition are available. 

Hardware 
cube 

A hardware or physical cube is a Rubik’s family cube that comes as a single-
size hand-held object. 

Software 
cube 

A software cube is a program that emulates and presents the cube in some 
form on a computer monitor and allows the user to rearrange it. Software 
cubes that accommodate a range of cube sizes are available. Such cubes are 
not subject to the physical restraints that impose a size limit on the hardware 
forms. 

Rule One of a set of generalized laws that defines what is and what is not possible 
(usually in mathematical terms) for Rubik’s family cubes. 

Cubie Individual cube elements will be referred to as cubies (others sometimes refer 
to them as "cubelets"). There are three types of cubies: corner cubies (three 
coloured surfaces), edge cubies (two coloured surfaces) and centre cubies (one 
coloured surface). The absolute centre cubies for odd size cubes sit on the 
central axes of the six faces and their relative positions never change. 

Cubicle A cubicle is the compartment in which a cubie resides. For a permutation, 
cubicles are considered to occupy fixed positions in the space occupied by the 
cube object but their contents (cubies) may shift position. 

Facelet A facelet is a visible coloured surface of a cubie (corner cubies have three 
facelets, edge cubies have two and centre cubies have one). 

Cube state A particular arrangement of the cubies will be referred to as a cube state. What 
looks the same is considered to be the same (unless specific mention to the 
contrary is made). Each state has equal probability of being produced after a 
genuine random scrambling sequence. A rotation of the whole cube does not 
change the state considered herein. In other texts the various states are often 
referred to as permutations or arrangements. 

Cube layer A cube layer is a one cubie width slice of the cube perpendicular to its axis of 
rotation. Outer layers (faces) contain more cubies than inner layers. For a cube 
of size n there will be n layers along any given axis.  

Cube face The meaning of a cube face depends on the context in which it is used. It 
usually means one of the six three-dimensional outer layers but can also refer 
to just the outside layer's surface which is perpendicular to its axis of rotation. 
The faces are usually designated as up (U), down (D), front (F), back (B), left 
(L) and right (R). 

Cube style Two cube styles are referred to in this document: firstly a standard cube with 
unmarked centres and secondly a cube with marked centres. 
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Set state The set (or solved) state of a cube with unmarked centres is one for which a 
uniform colour appears on each of the six faces. For cubes with marked centres 
the set state is characterised by a unique arrangement of all centre cubies. 

Scrambled 
state 

The scrambled state is the starting point for unscrambling the cube. It arises 
when a cube in the set or any other state is subject to a large number of 
randomly chosen layer rotations. 

Orbit For a basic quarter turn of a cube layer for cubes of all sizes, sets-of-four 
cubies move in separate four-cubicle trajectories. When all the possible 
trajectories for a given cubie type are considered for the whole cube we will 
refer to all the possible movement positions as being in a given orbit. We 
consider that the size 3 cube has two orbits, one in which the eight corner 
cubies are constrained to move and one in which the 12 edge cubies are 
constrained to move. Transfer of cubies between these orbits is impossible. 
For cubes of size 4 and above we will also define an edge cubie orbit as 
comprising 12 cubies but will use the term complementary orbit to describe a 
pair of orbits between which edge cubies can move. A pair of complementary 
edge cubie orbits contains a total of 24 cubies. Cubes of size 4 and above 
include centre cubie orbits that contain 24 cubies. Transfer of cubies between 
one such orbit and another is not possible (applies to cubes of size 5 and 
above). 

Move A move is a quarter turn rotation of a layer or a sequence of such quarter turns 
that a person would apply as a single step. 

Move 
notation 

A clockwise quarter turn of an outer layer is usually expressed as U, D, F, B, 
L or R. In other respects the notation used varies among authors. 

Algorithm An algorithm defines a sequence of layer rotations to transform a given state 
to another (usually less scrambled) state. Usually an algorithm is expressed as 
a printable character sequence according to some move notation. An algorithm 
can be considered to be a “smart” move. All algorithms are moves but few 
moves are considered to be algorithms. 

Permutation A permutation of the cube as used herein means the act of permuting (i.e. 
rearranging) the positions of cubies. A permutation is an all-inclusive term 
which includes a sequence of quarter turns of any length. Even the solving of 
the cube from a scrambled state represents a permutation. The term 
"permutation" is used extensively by mathematicians who use Group Theory 
to quantify the process involved in a rearrangement of cubies. 

The term "permutation" is also often used to mean the state of the cube that 
results after it is rearranged but that meaning will not be used herein. In such 
cases the term “cube state” will be used. That allows the term “permutation” 
to be used when the permutation results in no change of state – an area of 
special interest for Rubik’s family cube permutations. 

Parity A cube permutation can be represented by a number of swaps of two cubies. 
If that number is even the permutation has even parity, and if the number is 
odd the permutation has odd parity. 

 
 

2.  Introduction 
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Rules for the standard Rubik’s cube are used to define cube arrangements that are and are not 
reachable. Such rules are usually described in mathematical terms as numerical or logical 
constants. For instance the possible arrangement of cubies can be defined as an integer constant. 
In mathematical terms, whether a number is even, or whether a state is reachable, can be 
considered as a logical entity (having only a true or false value). When the Rubik’s family 
cubes are considered as a group, most rules need to be defined as mathematical functions of 
the cube size. 
 
Where applicable, results from the author’s other documents are used and those documents 
need to be referred to for detailed justification for those results. Except for some special cases 
to illustrate specific issues, this document does not provide instructions on moves (algorithms) 
for use in cube solving. On-line help for the author’s Unravel program software[1] and 
supporting documents[2][3] provide instructions and algorithms sufficient for solving cubes of 
various sizes with standard unmarked centres and marked centres respectively. There are many 
ways cubes can be solved and these references detail just one way. 
 
 

3.  Number of Cubies and Facelets 
 
For a cube of size n:  

Number of corner cubies = 8 
Number of edge cubies = 12(n - 2) 

Number of centre cubies = 6(n - 2)2 
Number of facelets = 6n2 

Total number of cubies = 6(n - 1)2 + 2 
Increase in total number of cubies for unit 
increase in cube size from n to n + 1 = 12n - 6 

 
 

4.  Cube Rotation Rules 
 
All rules that define what cube states are reachable are a consequence of the cube’s rotational 
movement possibilities. 
 
There are three mutually perpendicular axes[4] of rotation for the cube. One set of axes defined 
in terms of the D, U, B, F, L and R faces can be considered to have a fixed orientation in space. 
Think of these axes as belonging to a cube-shaped container in which the cube object can be 
positioned in any of 24 orientations. One axis can be drawn through the centres of the D and U 
faces (the DU axis). The others are the BF and LR axes. 
 
Another set of axes, can be defined for the cube object itself. These axes relate to the face 
colours, the most common being white, red, orange, yellow, green and blue. The axes are 
usually white-blue, red-orange and yellow-green. For odd size cubes these axes are always 
fixed relative to the internal frame of the cube object. For even size cubes these axes can be 
positioned in any of 24 orientations but remain fixed relative to the internal frame of the cube 
object after initial selections. The origin for the axes is the centre of the cube object. 
 



 4

The only way that cube state can be changed is by the rotation of cube layers about their axes 
of rotation. All changes of state involve rotation steps that can be considered as a sequence of 
single layer quarter turns. 
 
For a basic quarter turn of a cube layer for cubes of all sizes, sets-of-four cubies move in 
separate four-cubicle trajectories. For the size 3 cube there will be two such trajectories on any 
given face (one for corner cubies and one for edge cubies) and corresponding trajectories on 
the other five faces. When considering the cube as a whole, the term orbit is used to include all 
such trajectories. The position of the absolute centre cubie for odd size cubes does not change 
when its face is rotated. For odd size cubes of size greater than 3 the central edge cubies are 
constrained to a single orbit as for the size 3 cube. In all other cases there will be complementary 
edge cubie orbits between which cubie movement is possible. No movement of edge cubies 
between non-complementary orbits is possible. 
 
For odd size cubes the absolute centre cubies can be considered to reside on a fixed frame 
within the cube object. There can be no relative positional movement between the absolute 
centre cubies and they can be considered to form a fixed reference frame within the cube 
object. Rotation of these cubies about their own axes is possible but that rotation is relevant 
only when considering cubes with marked centre cubies. All cubie movements in odd size 
cubes can be considered as rotations relative to the fixed reference frame. For even size cubes 
no such reference frame can be observed from the external surfaces of the cube. Except for the 
absolute centre cubie for odd size cubes, the cubies move in separate 24 cubicle orbits. 
Movement of cubies between these separate orbits is not possible.  
 
Since movement between orbits is not possible for centre cubies, separate markings for 
different orbits are not required when marked centre cubies are considered. If that were not the 
case, the six colours of the standard cube would need to be replaced with 24 separately 
identifiable markings. A simple 1-2-3-4 marking superimposed on the six face colours is the 
approach that has been used where possible in the Java version of the Unravel program[1][3]. A 
corner marking graphic has recently been added to allow centre cubie marking to be extended 
beyond the numerical marking limit. 
 
 

5.  Permutation and Orientation Rules 
 
The rotation rules give rise to both cubie position and orientation limitations. Cubie position 
limitations are usually defined in terms of permutation parity rules. 
 
5.1  Permutation Rules 
 
A permutation of the cube, as defined in this document, means the act of permuting (i.e. 
rearranging) the state of the cube. Under this definition a cube move or rotation sequence is a 
permutation. Even the solving of the cube from a scrambled state represents a permutation. The 
term "permutation" is used extensively by mathematicians to quantify the process involved in 
a rearrangement of cubies. The term "permutation" may also be used to mean the state of the 
cube that results after it is rearranged but cube state in lieu of that meaning will be used herein. 
Permutations that result in no change of state can be considered as special cases that fit within 
the definition. 
 
The relationship between the cube state after a move with that before a move can be expressed 
mathematically using Group Theory[5][6][7] to quantify permutations. Since every move can be 
considered as a sequence of quarter turn rotations, it is appropriate to examine what is involved 



 5

in a quarter turn rotation. Except for the absolute centre cubie for odd size cubes, the cubies 
move in separate four-cubicle trajectories (also referred to as a 4-cycle movement since four 
quarter turns will restore the cubies in the specified trajectory to their original positions). A 
quarter turn of a 4-cubie set can be represented by three swaps as indicated below where swap 
1-2 means the contents of cubicle 1 is swapped with the contents of cubicle 2, etc. A clockwise 
quarter turn example is considered. 
 

Start  Swap 1-2  Swap 1-3  Swap 1-4 
1/A 2/B  B A  C A  D A 
4/D 3/C  D C  D B  C B 

 
The parity of a permutation can be expressed in various ways: 

Descriptive Logical Numerical 
even true 0 
odd false 1 

 
The numerical form has the advantage of providing a simple means of expressing parity in 
mathematical terms. Consider the application of permutation p1 which involves x1 swaps 
followed by another permutation p2 which involves x2 swaps. The overall parity of p1p2 can 
then be expressed in modulo2 form as (x1 + x2)(mod 2). 

Since a quarter turn is made up of a number of 4-cycles each involving three swaps, if the 
number of 4-cycles is odd, overall parity of the quarter turn permutation will be odd and vice 
versa.  
 
Quarter turn permutation parity for a size n cube is given in the following table.  
 

Cube size (odd 
or even) 

Layer type Number of 4-cycle 
movements 

Overall parity 

odd inner n - 1 even 

odd outer ((n - 2)2 - 1)/4 + (n - 1) even* 

even inner n - 1 odd 

even outer (n/2 - 1)2 + (n - 1) even if n/2 is even ** 
odd if n/2 is odd 

* Since ((n - 2)2 - 1) equals (n - 1)(n - 3), a product of two consecutive 
even numbers, which must always be evenly divisible by 8. 

** Since (n/2 - 1)2 will be odd if (n/2 - 1) is odd (i.e. if n/2 is even) giving 
overall even since (n - 1) is odd. The reverse applies if n/2 is odd. 

 
Summarising the above parity results we conclude:  

 All permutations for odd size cubes have even overall parity.  
 All individual quarter turns for even size cubes, where half the cube size is an odd 

number, have odd overall parity.  
 For even size cubes where half the cube size is an even number, inner layer quarter 

turns have odd overall parity and outer layer quarter turns have even overall parity.  

                                                
2 If h and n are positive integers, h modulo n (abbreviated to “h mod n”) is the remainder that results if h is 

divided by n. 
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The above analysis considered the parity for corner (where applicable), edge and centre cubies 
combined. It is possible to consider these in isolation and when that is done an even combined 
quarter turn parity will involve a number of odd parity elements.  
 
The parity rules as defined in the above table apply irrespective of how individual cubies are 
identified (e.g. whether or not all centre cubies in a given orbit have individually identifying 
markings). For normal cubes of size 4 and above, exchange of a centre cubie with any of the 
remaining centre cubies of the same face identification will result in exactly the same observed 
state for the cube. That makes it difficult to observe how compliance with parity rules is 
maintained and gives rise to the use of terminology such as “parity error correction”. For the 
central edge cubie for odd size cubes the behaviour is the same as that for the size 3 cube. Only 
half the conceivable orientations are reachable. 
 
For the edge cubie sets, comprising 12 complementary pairs (24 cubies total), there is no 
restriction on position as for the central edge cubies for odd size cubes. However, for any given 
position, only one of the two conceivable orientations is reachable. 
 
For cubes with marked centres there are 4! (equal to 24) possible arrangements for the four 
cubies in a given orbit for the first five faces but that is halved[3] (equal to 12) for the last face. 
For cubes of odd size this result can be inferred from the even parity rule for all permutations. 
For cubes of even size the same result applies but in that case the rule needs to be generalized 
to: “Any permutation that results only in a rearrangement of centre cubies in a given orbit must 
have even parity”.  
 
5.2  Identity Permutations 
 
As indicated above, some cubie permutations for even size cubes may have odd parity. 
However, a permutation that results in no change of state, which is often referred to as an 
Identity Permutation, must always have even parity. 
 
For example, if a permutation p1 is used to scramble the cube from the set state and permutation 
p2 is used to solve the cube from the scrambled state, then permutation p1p2 must have even 
parity. If, for an even size cube, p1 is even then p2 must also be even, and if p1 is odd then p2 
must be odd. 
 
A fundamental property[6] of the standard Rubik's size 3 cube is that any permutation applied a 
sufficient number of times will result in the cube state returning to that which applied before 
the first application of the permutation. That property also applies to Rubik’s family cubes of 
any size. The permutation (move) cycle length is the minimum number of times the 
permutation needs to be applied for the new state to correspond with the initial state. The cycle 
length is also referred to as the order of the permutation. The overall permutation comprising 
the defined permutation repeated the cycle length times represents an Identity Permutation. 
 
The Java version of the Unravel program[1] has an option which allows users to determine the 
cycle length of user-defined permutations for cubes of user-specified size..  
 
For any given permutation, a cube of any size greater than 3, which is subject to only outer 
layer rotations, will return the same cycle length. For any given permutation, cycle length may 
vary according to other variables as indicated in the following table.  
  



 7

Variable Effect 

Cube size Cube size can have a major effect on cycle length. 

Initial cube state* 

For cubes with unmarked centres, the cycle length for a cube with 
an initial set state may be different to that for an initial scrambled 
state. This arises because centre cubies can end up in different 
positions that appear identical.  

For cubes with marked centres, the cycle length is independent of 
initial state. 

Cube style 
(unmarked or 

marked centres) 

Cycle count for cubes with unmarked centres can be the same or 
lower than that for a cube with marked centres. 

Spatial orientation 

The state of a cube is not changed if its spatial orientation is 
changed (e.g. if a hardware cube is turned upside down). There are 
24 ways a cube can be presented spatially and all 24 need to be 
checked if correspondence with any spatial orientation of the initial 
state is to terminate the cycle count. 

 
* For example the Unravel program permutation #7B#3U-#7BU#7B-#3U-#7BUU 

swaps a centre cubie on the F face with one in the equivalent position on the U face 
(where #3U etc. means the third row from the top is rotated a quarter turn clockwise 
about the U axis and “–”refers to anticlockwise). When applied to a set cube with 
unmarked centres it exhibits a cycle length of 4. When a random initial state is chosen 
for the unmarked cube or any initial state for a marked cube, the cycle length changes 
to 12. 

 
Cycle lengths are more often even numbers but can also be odd. Some examples that illustrate 
the effect of different settings for variables (defined in the above table) are given in the 
following table. Marking does not apply for the size 2 cube. In general smart moves 
(algorithms) usually have short cycle lengths. Cycle lengths and count times can be very large. 
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Cube 
size 

Marking Initial 
state 

Final 
orientation 

Permutation* Permutation 
parity 

Cycle 
length 

All Either  Not 
relevant 

F Odd if n is even 
and n/2 is odd 

4 

All Either Set Initial WF Even 4 
All Either Set Any WF Even 1 
All Unmarked Set Initial FR Even 105 
All Unmarked Scrambled Initial FR Even 420 
All Marked Set Initial FR Even 420 
All Either Set Initial FUR Odd if n is even 

and n/2 is odd 
84 

All Unmarked Set Initial LLU-FBLL-BFULL Even 3 
All Marked Set Initial LLU-FBLL-BFULL Even 6 
All Unmarked Set Initial -RDRFD-F Even 45 
4+ Unmarked Scrambled Initial -RDRFD-F Even 90 
All Marked Set Initial -RDRFD-F Even 90 
4 Either Set Initial 2F2R Even 15 

16 Unmarked Set Initial 2F2R Even 105 
16 Marked Set Initial 2F2R Even 420 
4 Either Set Initial 2F3R Odd 6840 

16 Unmarked Set Initial 7F11R Even 75240 
16 Marked Set Initial 7F11R Even 150480 
64 Unmarked Set Initial 7F11R Even 1680 
32 Either Set Initial FURBDL13F29R19B Even 526680 
32 Either Set Initial FURBDL12F28R18B Odd 8953560 

* -R etc. means a counter-clockwise outer layer quarter turn about the right face. 
 3R etc. means a clockwise quarter turn of the three outer-most layers about the R face 

axis. 
 WF means a clockwise quarter turn of the whole cube about the front face. 

 
Some rules that apply to identity permutations that may or may not be illustrated in the above 
short sample are: 

 If permutation parity is odd cycle length is always even. 
 Cycle length for any permutation involving only outer layer rotations is independent of 

cube size (but may vary with initial state or marking). 
 Cycle lengths for permutations involving only inner layer rotations are always even. 
 Cycle lengths for permutation involving only inner layer rotations may vary with cube 

size (noting that some permutations that are valid for larger cubes will not be valid for 
smaller ones). 

 
5.3  Orientation Rules 
 
Corner cubies have three possible orientations. Seven of the eight corner cubies can be 
arbitrarily located. Once the orientation of seven corner cubies is defined there is only one 
possible orientation for the last one. 
 
Edge cubies for the size 3 cube and the central edge cubies for larger odd size cubes behave 
similarly. Eleven of the twelve edge cubes can be flipped independently, with the flip state of 
the last depending on the preceding ones. 
 
For cubies of size 4 and above, movement of edge cubies within complementary orbits, 
containing a combined total of 24 edge cubies, is possible. All edge cubies in the set of 24 can 
be arbitrarily placed if some centre cubie movement is permitted. Orientation cannot be 
changed independently of placement. 
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Orientation of centre cubies is relevant if the six absolute centre cubies for odd size cubes have 
markings to indicate rotational status. For such cubes the rotational status of five centre cubies 
can be arbitrarily set but the only reachable states for the last one is the current state and a half 
rotation from that state. 
 
For cubes of size 4 and above the sets-of-four centre cubies on any face behave like the centre 
cubies for the size 3 cube (i.e. if no change to the cube arrangement other than to the set-of-
four cubies under consideration is permitted, then the only .possibilities are the current 
arrangement and a half turn from the current arrangement). However, for normal cubes this 
condition can be met by changes that are not readily observable. 
 
For the size 4 cube there is a single orbit of 24 centre cubies and for cubes of size greater than 
4, there will be multiple 24 centre cubie orbits. For hardware cubes, the orientation of the centre 
cubies changes with position as the face is rotated. The orientation changes are visible only in 
cubes with marked centres[3]. For hardware cubes, if the position is known the orientation is 
known and vice versa. For software cubes it follows that restricting movement to only position 
changes meets all necessary rule requirements. 
 
 

6.  Reachable and Unreachable States 
 
If a cube has at some previous time occupied the set state, then any state that can arise after 
legal moves is considered to be a reachable state. For small size cubes (size 2, 3 or 4) an 
unreachable state is one that cannot be reached by legal moves. For larger cubes there needs to 
be some further qualification on what is meant by an unreachable state. In this document we 
exclude notional movement between 24-cubie orbits for edge and for centre cubies.  
 
6.1  General Relationship Between Reachable and Unreachable States 
 
If, for a cube of any size, m represents the number of reachable states, u represents the number 
of unreachable states and t equals their sum: 

t = u + m 
t = km where k is a positive integer 
u = (k – 1)m 

 
Both m and k are functions of cube size n. Values for m and k will be considered in the following 
sections. 
 
6.2  Reachable States for Cubes of All Sizes 
 
The number of reachable states is based on: 

 Standard permutation mathematics.[9] 
 Reduction factors that must be applied to reflect movement restrictions specific to 

Rubik’s family cubes. 
 
The number of reachable states for cubes of all sizes can be simply related to the numbers that 
are applicable to the size 3 and size 4 cubes. My reference[9] provides a derivation and 
justification for the general relationships for: 

 a standard size n cube, and  
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 a size n cube for which all centre cubies in each 24-cubie orbit have identifying 
markings such that each one can have only one correct location for the solved state. 

The results are reproduced here. 
 
The standard unmarked cube can be considered to form a batch of special cases of the marked 
cube for which the set state represents a unique arrangement of all cubies and their orientations. 
 
For cubes with unmarked centre cubies the following positive integer constants (represented 
by P, Q, R and S) apply. 
 

Corner cubie possibilities for even size 
cubes 

P (7!) 36 3.67416000000000x 106 

Central edge cubie possibilities for odd 
size cubes, multiplied by 24 

Q 24 (12!) 210 1.17719433216000x 1013 

Edge cubie possibilities for each 
complementary set (12 pairs) 

R 24! 6.20448401733239x 1023 

Centre cubie possibilities for each 
quadruple set (6 groups of 4) 

S (24!)/(4!)6 3.24667053711000x 1015 

Note: ! is the factorial symbol (N! means the product 1 × 2 × ... × N).  

The number of reachable states m for a size n cube can be defined in terms of the factors P, Q, 
R and S.  

m = P Qa Rb Sc  
where a, b and c are positive integer variables (functions of cube size n) as given below.  

a  =  n mod 2 (i.e. 0 if n is even or 1 if n is odd) 
b  =  (n - 2 -a)/ 2 
c  =  ((n - 2)2 - a)/ 4 

For even size cubes Qa = 1. 
 
The value of S warrants further explanation. For a marked cube, for any specific arrangement 
of edge cubies, only half the conceivable states are reachable. Hence in that case the number 
of reachable states is 24!/2. If the special markings are now removed, we need to reduce the 
above number of possibilities by a factor of 4! for each set of four identical centre cubies, except 
the 4! factor for the last set of four which is halved to account for unreachable states similar to 
that which applied for marked centre cubies. Hence the net number S of possible 
arrangements for the centre cubies of a size 4 cube becomes S = (24!)/(4!) 6 
 
For cubes with marked centres the values for P and R will be the same as above but those for 
Q and S will be different. For parameter Q we need to take account of the orientation of the 
absolute centre cubie for cubes of odd size. For parameter S we need to have identifying 
marking of all 24 centre cubies in each orbit (but the same markings can be used for each orbit). 
Define mM, QM and SM to be the changed parameters. 

QM  =  T Q   where T = 46/2 = 2048 
SM  =  V S   where V = (4!)6/2 = 95551488 

mM  =  P (QM)a Rb (SM)c 
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mM  =  mD m 

mD  =  Ta Vc 
Parameter mM defines the number of reachable states for cubes with marked centres. Factor mD 
gives the number of different arrangements of unmarked centre cubies that will provide a 
solved size n cube. Parameter mM defines the number of reachable states for cubes with marked 
centres. It is also the factor by which the number of different states for a standard cube needs 
to be multiplied by when marked centres apply. My reference[9] provides numerical values for 
m and mM for a range of cube sizes n. 
 
The above results for cubes with marked centres have major implications for solving such cubes 
and some of these are examined in Sec. 8. 
 
6.3  Reachable States for Cubes of All Sizes Simplified  
 
A simplified function[9] for the number of cube states possible for a cube of size n results if that 
number is expressed in logarithmic form. 
Define m = 10y (or y = log10m). 

y = An2 + Bn + C where A, B and C are constants. 
Constants A and B are the same for n even and for n odd but the value of C is different. The 
constants have the following values. For standard cubes with unmarked centres the following 
values apply. 

A = 3.87785955497335 
B = –3.61508538481188 

CEVEN = –1.71610938550614 
CODD = –4.41947361312694 

 
Hence, with the logarithmic presentation the number of cube states can be expressed using just 
four non-integer numbers (A, B and the two C values). Furthermore, the number of cube states 
form a restricted set of values for a more general continuous parabolic function for which n can 
have non-integer and negative values. Calculating the value of m from the corresponding value 
of y is a straight forward process and the above four constants have been validated[9] in respect 
of known values for m. 
 
For cubes with marked centres the A, B and the two C values are different as shown below. 

A = 5.87291891862476 
B = -11.59532283941750 

CEVEN = 6.26412806909952 
CODD = 4.87703443013109 

 
6.4  Unreachable States for Cubes of All Sizes 
 
The number of unreachable states far exceeds the number of reachable states. There are many 
references to the number of unreachable states for the size 3 cube but very few for larger size 
cubes. 
 
The unreachable arrangements for corner and edge cubies are the same for cubes with or 
without marked centres.  
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If we consider a corner cubie for cubes of any size then a 1/3 twist clockwise leaving everything 
else unchanged will represent an unreachable state, and similarly for a 1/3 twist counter-
clockwise. Hence only 1/3 of the twist possibilities are reachable. 
 
For the central edge cubie for odd size cubes the behaviour is the same as that for the size 3 
cube. Only half the conceivable positions are reachable and only half the conceivable 
orientations are reachable. Hence only 1/4 of the central edge cubie movement possibilities are 
reachable. 
 
Edge cubies that comprise 12 complementary pairs (24 cubies total) behave as if the 
complementary cubies did not look the same. Any given edge cubie can move to any position 
in the 24-cubie orbit but for any given position there is one reachable and one unreachable 
orientation for that cubie. The reverse applies for the complementary edge cubie. For a given 
cubie (1-2) the reachable and unreachable orientations for a given face for a given orbit for a 
size 8 cube is illustrated below. One of the 24 reachable possibilities for a given edge cubie 
matches that of the set cube. 

 
The number of unreachable states for a 24-edge-cubie set is the same as the number of 
reachable states (24! in each case). 
 
As indicated in my reference[9], in the case of the marked centre cubies only half the 
conceivable arrangements for each set of 24 cubies for any given orbit are reachable. The same 
parity rules that apply for marked centre cubies also apply for the unmarked centre cubies. A 
quarter turn of a set-of-four centre cubies cannot be achieved without changing the arrangement 
elsewhere to meet the parity requirement. Because there are 95551488 (Sec. 6.2) ways of 
arranging the individual centre cubies so that the resulting arrangement appears exactly the 
same, parity rules can be met without any observable indication of how the parity compliance 
is achieved. Hence, for the normal case (24 cubies comprising four of each of six colours) there 
is no restriction on the achievable states for the centre cubies. 
 
The following table uses the values noted above to represent the k component (Sec. 6.1) factors 
for the size n cube. Exponents a, b and c are as defined in Sec. 6.2. 
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Reduction components for factor k (for standard cube with 
unmarked centres) and for kM (for cube with marked centres)  

Cube type 

Standard Marked centre 
cubies 

Corner cubie factor 3 3 
Central edge cubie factor (such cubies exist only for cubes of 
odd size) 

22a 22a 

Edge cubie factor for all 24–cubie sets combined 2b 2b 
Absolute centre cubie factor (such cubies exist only for cubes 
of odd size) 

1 2a 

Centre cubie factor for all 24-cubie sets combined 1 2c 
 

For the standard size n cube k = (3)(22a + b) 
For the marked centres cube kM = (3)(23a + b + c) 

Some values for cubes of small size are given below. 

Cube size 2 3 4 5 6 7 8 
Value of k 3 12 6 24 12 48 24 

Value of kM 3 24 12 192 192 6144 12288 
 
As noted in Sec. 6.1 the number of unreachable states is given by (k – 1)m for standard cubes 
and by (kM - 1)mM for cubes with marked centre cubies. 
 
 

7.  Parity Compliance for Cubes of Size Four and Above 
 
For standard cubes (i.e. cubes with unmarked centre cubies) of size 4 and above, the 24 centre 
cubies in each orbit have an even distribution of six colours. As indicated in Sec. 6.2, there are 
many (95551488) ways of rearranging the centre cubies in each orbit that appear exactly the 
same. In this document parity laws are defined such that they apply independently of any 
identification colours or markings on cubies. It follows that compliance with parity rules tends 
to be obscured in standard cubes since position changes of centre cubies of a given colour are 
not always observable. Compliance with parity rules is readily observable for cubes with 
marked centres. 
 
7.1  Edge Cubie Final Layer Alignment Issues 
 
For cubes of size 4 and above it is well known that for the final layer there may be a need for a 
rearrangement of cubies that cannot be achieved using standard size 3 cube moves. The moves 
to resolve these issues are well documented but conformity with parity rules can be obscured 
for standard cubes because the 24 centre cubies in each orbit can be arranged in many ways 
that look the same but from a parity perspective are different. 
 
While there are many ways of rearranging the cubies to overcome final layer problems that do 
not arise for the standard size 3 cube, all standard cubes can be solved with attention to two 
basic problem situations: 

 There is a need to flip a complementary pair or a complete set of edge cubies in a final 
edge set. This condition will be referred to as an OLL (orientation of last layer) 
requirement. 

 There is a need to swap the positions of two edge cubie sets in the final layer. This 
condition will be referred to as a PLL (permutation of last layer) requirement. 
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OLL3 and PLL4 as used here can be considered to be sub-sets of the usual definitions[10] of 
these terms. The above needs also arise for cubes with marked centres but additional steps[3] 
are required to complete the alignment of the final face. 
 
The problems that can arise for a size 16 cube example are illustrated below where departures 
from a completely solved cube are shown. In practice these problems are likely to be corrected 
before other alignment actions are completed for the final layer. 
 

1 2 3 4 

    
 

1. Final edge set in this example has three complementary pairs of edge cubies that have 
a different sense to the other edge cubies in the set.  

2. An appropriate sequence of rotations is applied to 1 to correct the problem for one of 
the complementary pairs (similar sequences are required to perform corrections on the 
remaining complementary pairs still requiring correction).  

3. The sense of all the edge cubie elements in the final set is the same but just this one set 
needs to be flipped to resolve this problem (this can only occur for cubes of even size). 
Alternatively, action as indicated here can be avoided by flipping initially the inner 
complementary pair of edge cubies to match the correct final alignment and then 
matching all further complementary pairs of edge cubies to the initial pair.  

4. The positions of two (and only two) edge cubie sets need to be swapped to resolve this 
problem (can occur only for cubes of even size). The solution to this problem can also 
be subdivided into a sequence of moves that applies to just four edge cubies at a time 
(as for the size 4 cube). 

 
The correction of all of the problems mentioned above normally involves some rearrangement 
of centre cubies. Problems similar to those illustrated in images 1 and 2 occur in odd size cubes. 
Rotation sequences required to resolve final layer problems for cubes of any size are similar to 
those required for the size 4 cube. 
 
7.2  Permutations and Parity for Final Layer Edge Cubie Alignment 
 
Because there are no distinguishing marks on the centre cubies when OLL and PLL corrections 
are made for standard cubes, it can be difficult to demonstrate how compliance with parity rules 
is met. Another[2] of my documents, which is primarily concerned with providing instructions 
and details of the moves that can be used to solve cubes of all sizes, is the source used for 
defining the small number of moves involved in this analysis. The move notation used here is 
the same as that used in that reference. 
 

                                                
3  OLL usually means manipulating the last layer cubies so that the face has uniform colour, even at the expense 

of incorrect colours on other sides. 
4  PLL usually means moving the last layer cubies to correct positions while preserving their orientation. 
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Consider the OLL correction for a complementary pair of edge cubies located at the front of 
the upper layer. The various moves in the above reference are defined in macro5 terms. The 
general form for the final edge set alignment macros is:  

M1c = #cR#cRBBUU#cLUU-#cRUU#cRUUFF#cRFF-#cLBB#cR#cR 
 

where U etc. means rotate the outer layer of the given face by a quarter turn 
clockwise. 

 #cR etc.means rotate just the cth layer from the given face a quarter turn 
clockwise. 

 A minus (-) ahead of the above means a counter-clockwise quarter turn 
rotation is involved. 

 c is the column number of the left cubie of the pair to be flipped (c = 1 for 
the left corner cubie which is not involved in the above move). 

 
There is no cube-size-dependent item in this macro. The only effect of cube size is the need for 
more macros of this form. Consider the application of the following OLL macro for a size 9 
cube. 

M13 = #3R#3RBBUU#3LUU-#3RUU#3RUUFF#3RFF-#3LBB#3R#3R 

If this macro is applied to a set cube the only observable change is the flipping of a 
complementary pair of edge cubies. To observe what really happens the macro needs to be 
applied to a marked cube or a randomised cube or a set cube that has been appropriately 
disturbed. The effect is clearly visible if applied to a set cube with marked centre cubies[1]. The 
result is detailed below. 
 
In the following illustrations the only cubies (centre and edge) that move position are shown in 
colour. Alphanumerical identification shows positional movement. 
 

OLL before correction for size 9 cube OLL after correction for size 9 cube 

  
 
For the OLL correction for a size n cube, there are (n – 2) centre cubie swaps and overall there 
are (n – 1) swaps when the edge pair is included. For odd size cubes (n – 1) is always even (and 
conforms to the universal parity requirement for odd size cubes). For even size cubes (n – 1) is 
always odd which means in this case a parity reversal always occurs, an allowable parity 
condition for even size cubes. 

                                                
5 The term “macro” as used in computer science is a rule or pattern that specifies how a certain input sequence 

should be mapped into an output sequence. Macros are normally used to map a short string to a longer string 
(sequence of instructions). Macros simplify things by providing short-cuts for long sets (or frequently used 
short sets) of rotational instructions to produce a desired change of cube state. 
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The parity of the above OLL move can also be readily assessed by examining the algorithm 
used. Since all moves for odd size cubes have even parity, it is relevant to consider only even 
size cubes. The above OLL move has an even number of outer layer rotations so those rotations 
have no impact on the move’s parity. There is an odd number of inner layer rotations that will 
always render odd parity for the above OLL move for even size cubes. 
 
For the complete edge set flip (a requirement that can arise only for cubes of even size), there 
will be (n – 1)(n/2 – 1) swaps. The overall number of swaps will be even if (n/2 – 1) is even 
(i.e. n/2 is odd). The overall number of swaps will be odd if n /2 is even. 
 
The following macro (permutation) can be used to flip a complete edge set located at the front 
of the upper layer. 

M10 = cRcRRRBBUUcL-LUU-cRRUUcR-RUUFFcR-RFF-cLLBBcRcRRR 

where c is equal to half the cube size.  
 cR etc. means rotate all c layers from the given face a quarter turn 

clockwise. 
 A minus (-) ahead of the above means a counter-clockwise quarter turn 

rotation is involved. 
 
For the complete edge set flip, permutation parity will be odd if n/2 is even and even if n/2 is 
odd. Examination of the M10 macro gives the same result. 
 
For the size 10 cube: 

M10 = 5R5RRRBBUU5L-LUU-5RRUU5R-RUUFF5R-RFF-5LLBB5R5RRR 

M10 has the same outcome as M12M13M14M15. 
 
Now consider what is involved in the PLL correction. It can also be considered as being the 
combined effect of a number of moves involving just four edge cubies as for the size 4 cube. 
The following macro does a front to back swap for the upper layer. 

M0c = #cR#cRUU#cR#cRUUdUdUUU#cR#cRdUdUUU 

where c is the column number of the left edge cubie involved in the swap (c = 1 
for the left corner cubie which is not involved in the above move). 

 d is equal to half the cube size. 
 
The equivalent macro to perform a left to right swap on the front layer is: 

M0c = #cU#cUFF#cU#cUFFdFdFFF#cU#cUdFdFFF 
 
Consider the application of the following PLL macro for a size 10 cube. 

M03 = #3U#3UFF#3U#3UFF5F5FFF#3U#3U5F5FFF 

If this macro is applied to a set cube the only observable change is the swapping of a 
complementary pair of edge cubies on the left side front face with another complementary pair 
on the right side of the front face. To observe what really happens the macro needs to be applied 
to a randomised cube or a marked cube or a set cube that has been appropriately disturbed. The 
effect is clearly visible if applied to a set cube with marked centre cubies[1]. The result is 
detailed below. 
 
In the illustrations below the only cubies (centre and edge) that move position are shown in 
colour. Alphanumerical identification shows positional movement. 
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For the specific PLL permutation used here, there are 2(n – 2) centre cubie swaps and overall 
there are 2(n – 1) swaps when the edge pairs are included. Hence even parity is always 
maintained. 
 
The following macro (permutation) can be used to flip a complete edge set located at the front 
of the upper layer. 

X = dRdRRRUUdRdRRRUUdUdUUUdRdRRRdUdUUU 

where d is equal to half the cube size. 
 
For the size 10 cube: 

X = 5R5RRRUU5R5RRRUU5U5UUU5R5RRR5U5UUU = M02M03M04M05 

If the complete set of edge cubies is swapped there will be (n – 2)2 centre cubie swaps. Adding 
the (n – 2) edge cubie swaps gives a total of (n – 1)(n – 2) swaps for the above permutation. 
 

PLL before application of M03 correction for a size 10 cube 

 
 

PLL after application of M03 correction for a size 10 cube 

 
 
7.3  Further Parity Observations for Standard and Marked Cubes 
 
The OLL and PLL corrections used in the previous section have the following properties: 

 If they are applied to a standard cube that has centre cubies aligned, no change to the 
cube state except for the edge cubies being aligned (flipped and/or moved) is observed 
after they are applied. 
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 If they are applied to a standard cube with scrambled centre cubies, or a cube with 
marked centres, an observable change in the state of the centre cubies occurs after they 
are applied. 

 
One may pose the question: Does a permutation exist that will result in no observable change 
to the cube state for standard cubes, except for the edge cubies being aligned, for the general 
scrambled cubie case? Since there are no unreachable positions for centre cubies in unmarked 
cubes we may suspect that the answer should be in the affirmative but it is not too difficult to 
validate it for a specific case. 
 
To simplify matters consider the size 4 cube which has 24 centre cubies comprising four of 
each of six colours. In effect, larger cubes behave the same for each separate orbit comprising 
24 centre cubies for cubes with unmarked centres. Validation can be conveniently performed 
using a software cube for which cube state can be saved and edited. Scramble the cube and 
rearrange a pair of edge cubies off-line to conform with the OLL realignment as indicated 
below. Note that such a rearrangement on-line normally takes place with a rearrangement of 
centre cubies that may be unobservable. 
 

Change a c to d b 
b d c a 

 
Define S11 as the state after the scramble and S21 as the state after the off-line modification. It 
is known that the cube is solvable from the S11 state. Define the overall permutation to solve 
the cube from state S11 to be P1 and define the resultant solved state as S12. For the size 4 
example it was found that the cube is also solvable from state S21. Define S22 as the solved state 
with the same spatial orientation as S12. Define P2 as the permutation to transform S21 to S22. 
 
It follows that, for cubes with unmarked centres, permutation P1P2

-1 or P2P1
-1 where the -1 index 

signifies the reverse permutation sequence, will perform the OLL alignment without any 
external observable change to any other cubies. Furthermore, P1

-1 applied to S12 will not only 
restore the S11 state but the centre cubies will be in exactly the same positions they were in 
originally. The same applies when P2

-1 is applied to S22. To comply with parity rules for cubes 
of odd size, state S21 can only be obtained after rearrangement of the centre cubies, even if the 
rearrangement is obscured. The behaviour of cubes of even size is more difficult to predict as 
odd parity can exist. It was observed that the final stage marked centre cubies can be aligned 
for a size 4 cube with edge cubies misaligned. Hence, to comply with cube rules state S12 would 
not normally be the same as state S22 if all 24 centre cubies had distinguishing marks. As 
indicated in Sec. 6.2, there are 95551488 ways of arranging the centre cubies in a particular 
orbit for an unmarked cube so that the resulting arrangement appears exactly the same. 
 
A solvable cube results after the following off-line editing actions for a cube with unmarked 
centres: 

 A quarter turn of any set-of-four centre cubies (any mixture of colours allowed) with 
no change to any other cubies. 

 Two centre cubies (having any colour) located anywhere in the same 24 cubie orbit are 
swapped. 

 Complementary edge cubies located anywhere are both flipped. 
 
An unsolvable cube always results after the following off-line editing action for any cube 
(standard or marked): 

 Just one edge cubie is flipped. 
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The effect of an off-line edge cubie swap and flip was also examined for a marked cube. Except 
for the size 4 cube the final layer centre cubies cannot be fully aligned if one or more 
complementary pairs of edge cubies have not been aligned. The results are shown in the 
following section. 
 
7.4  Marked Cube Solving Note 
 
The results that have been presented in this document have major implications for solving cubes 
with marked centres. With edge cubies fixed in position, movement of centre cubies is always 
limited to an even number of swaps. That immutable law can give rise to solving difficulties if 
some conditions are not met. 
 

1. Due to the interaction between complementary edge cubies and centre cubies it will be 
impossible to place the final layer centre cubies if the 24 edge cubie sets comprising 12 
complementary pairs are not properly aligned for each orbit for cubes of size greater 
than 4.  

2. A missed alignment, for example a need for a 2 to be swapped with a 3 somewhere 
external to the final face in a particular orbit, will mean the centre cubies in the final 
face cannot be aligned until the error is corrected. If there is an even number of such 
erroneous swaps required external to the final layer then the final layer can be fully 
aligned but to achieve the single final solved state they need to be corrected. 

 
The likelihood that either of these conditions would arise when a marked cube is being aligned 
increases with cube size. However, the first condition is far less likely to arise than the latter 
because the color mismatch is far more readily observable than a marking error. 
 
An example of a condition 1 misalignment would be a single complementary pair of edge 
cubies needing to be swapped. Such a misalignment has a dramatic effect on the last face to be 
aligned and will normally render it impossible to align the centre cubies on the last face. The 
centre cubies on the last face can always be aligned for a size 4 cube having a misalignment of 
edge cubies but realignment of centre cubies will be needed after the edge cubie misalignment 
is corrected. For that size cube a single swap of a pair of edge cubies is possible since odd 
parity is possible for cubes of even size. The effect of the edge pair misalignment for cubes of 
various size is illustrated in the following table. We define here an alignable orbit as one that 
can return a correct 1234 sequence on the final face and a non-alignable orbit as one that can’t. 
To satisfy the universal even parity rule for odd size cubes the number of non-alignable orbits 
for cubes of odd size must always be odd.  
 

Cube size (n) Number of centre 
cubie orbits (c) 

Alignable orbits 
(w) 

Non-alignable 
orbits (x) 

4 1 1 0 
5 2 1 1 
6 4 2 2 
7 6 3 3 
8 9 5 4 
16 49 25 24 
32 225 113 112 

 
The result can be expressed in simple mathematical form. 
From Sec. 6.2:  c  =  ((n - 2)2 - a)/ 4 

x = (c – c mod 2)/2 
w = c - x 
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Because misalignment of edge cubies has such a dramatic effect on centre cubie alignment it 
is advisable that centre cubies on all but the first face be aligned after the edge cubies have been 
aligned. 
 
A condition 2 misalignment can fairly readily arise in cubes of large size because of the small 
size of the numerals and the fact that there is no change in colour to highlight the misalignment. 
For example, consider a 2 and 3 need to be swapped somewhere in a particular orbit on a 
particular face. In that case it will make it impossible to obtain a 1234 alignment of that orbit 
on the final face until the error has been corrected. In general an odd number of such corrections 
for a particular orbit will result in the inability to obtain a 1234 alignment whereas an even 
number will allow alignment. However, corrections are always necessary to achieve the one 
and only solved state. 
 
 

8.  Concluding Comments 
 

 The set of rules that apply to the standard size 3 Rubik’s cube is a special case of a 
generalised set of rules that are defined herein for cubes of all sizes. 

 The standard configuration for centre cubies, where an equal number of six colours is 
used per 24 centre-cubie-orbit, is a special case of a cube where all such 24 centre cubies 
have individually identifiable marks. 

 Parity rules for standard cubes and those with marked centres are the same but 
compliance with these rules tends to be obscured for the former. 

 Alignment of the final layer is impossible if edge cubies have not been completely 
aligned before the final layer centre cubies for cubes of size greater than four with centre 
cubie marking applied. 

 The number of states possible for cubes of all sizes can be expressed in terms of four 
non-integer constants by using a logarithmic presentation. 

 The logarithm of the number of possible cube states is a special case of a quadratic 
(parabolic) function for which Rubik family cube values form a restricted set. 

 
 



 21

References 
 
1. Fraser, K., UnravelJ - Size 2x2x2 to 99x99x99 for standard cube, size 3x3x3 to 

32x32x32 for centres with numerical markings and up to 99x99x99 for centres with 
corner markings, 2D, Java applet, Java Web Start or Java archive direct download, all 
platforms. http://kenblackbox.com/unravelcube.htm. 

2. Fraser, K., Instructions for Solving Rubik Family Cubes of Any Size, 
http://www.kenblackbox.com/cube/solving/cubesolving.pdf. 

3. Fraser, K., Implementing and Solving Rubik’s Family Cubes with Marked Centres. 
http://www.kenblackbox.com/cube/solving/markctr.pdf 

4. Wikipedia, the free web encyclopaedia, Cartesian coordinate system, 
http://en.wikipedia.org/wiki/Cartesian_coordinate_system, Retrieved 2017-02-13. 

5. Davis, T., Permutation Groups, 2 April 2003. 
http://www.geometer.org/mathcircles/perm.pdf 

6. Davis, T., The Mathematics of the Rubik' Cube: Introduction to Group Theory and 
Permutation Puzzles, 17 March 2009. http://web.mit.edu/sp.268/www/rubik.pdf 

7. Dogfrey, A., The Dog School of Mathematics: Introduction to Group Theory. 
http://dogschool.tripod.com/index.html Retrieved 2017-02-13. 

8. Mason, O., Some Simple Counting Rules, EE304 - Probability and Statistics 
http://www.hamilton.ie/ollie/EE304/Counting.pdf. Retrieved 2017-02-13. 

.9. Fraser, K., Rubik's Cube Extended: Derivation of Number of States for Cubes of Any 
Size and Values for up to Size 25x25x25. 
http://www.kenblackbox.com/cube/maths/cubestates.pdf 

10. Wikipedia, the free web encyclopaedia, Fridrich Method, 
http://en.wikipedia.org/wiki/Fridrich_Method, Retrieved 2017-02-13. 

 


